des Sciences, Route de Laval, 72017 Le Mans Cédex, France. Na₅Al₃F₁₄ (*P4/mnc*; a = 7.0138(8); c = 10.402(2)) accurate X-ray structure determination has been carried out from 466 reflections (R = 0.021; $R\omega = 0.028$). The structure is built with shifted independent [Al₃F₁₄]⁵ⁿ⁻ layers perpendicular to the \vec{c} axis according to the previous BROSSET description. The EPR spectrum of Cr³⁺ ion in Na₅Al₃F₁₄ is fully analyzed. For Cr³⁺ in orthorhombic site (4c), the EPR spectrum is characterized by a large axial field parameter ($b_2^\circ = 4200 \ 10^{-4} \ cm^{-1}$). A structural phase transition occurring about 175 K has been detected.

Crystal Structure of an Ammonium Phosphochromate: $(NH_4)_3PCr_4O_{16}$. M. T. AVERBUCH-POUCHOT, A. DURIF,* AND J. C. GUITEL, Laboratoire de Cristallographie, CNRS 166 X, 38042 Grenoble Cédex, France. Ammonium phosphochromate $(NH_4)_3PCr_4O_{16}$ is trigonal (R3m) with the following unit cell dimensions: $a_{\rm H} = 12.033$ (8), $c_{\rm H} = 10.032$ (8) Å, and Z = 3 for the hexagonal cell; $a_{\rm R} = 7.710$ (5) Å, $\alpha_{\rm R} = 102.59$ (5)°, and Z = 1 for the rhombohedral cell. The crystal structure of this compound has been solved with a final R value of 0.054. The main feature of this atomic arrangement is the existence in the anion configuration of a central PO₄ tetrahedron linked to four CrO_4 tetrahedra.